Stepwise Synthesis of Tungsten-Platinum or -Gold Bonds bridged by Alkylidyne Ligands: X-Ray Crystal Structures of $[Pt_3W_2(\mu_3-CR)_2(CO)_4 (\eta\text{-}C_{5}H_{5})_{2}(\text{cod})_{2}]$ (cod $=$ cyclo-octa-1,5-diene), **[Pt₂W₃(μ-CR)₂(μ₃-CR)(CO)₆(η-C₅H₅)₃], and [AuW₂(μ-CR)₂(CO)₄(η-C₅H₅)₂]-
[PF₆]**

M. Rasol Awang, Gabino A. Carriedo, Judith A. K. Howard, Kevin A. Mead, lain Moore, Christine M. Nunn, and F. Gordon A. Stone

Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 1 TS, U.K.

The synthesis of metal complexes with bonds between tungsten and platinum or gold, bridged by tolylidyne ligands, is described; and the molecular structures **of** the species $[Pt_3W_2(\mu_3\text{-}CR)_2(CO)_4(\eta\text{-}C_5H_5)_2(cod)_2]$ (cod = cyclo-octa-1,5-diene), $[Pt_2W_3(\mu\text{-}CR)_2(\mu_3\text{-}CR)(CO)_6$ - $(\eta$ -C₅H₅)₃], and $[Au\dot{W}_2(\mu-\text{CR})_2(\text{CO})_4(\eta-\text{C}_5\text{H}_5)_2] [\text{PF}_6]$ (R = C₆H₄Me-4) have been established by X-ray crystallography.

The dominant structural pattern in organo-transition element cluster chemistry is one in which the metal atoms form triangles to which the peripheral ligands are bound.¹ In species with more than three metal atoms the latter generally occupy all or some of the vertices of a triangulated polyhedron.² Recently, however, novel raft-like osmium carbonyl cluster structures have been characterised with fused triangles of metal atoms serving as the core.3 Chain structures held together by metal-metal bonds are generally not found with organometallic species, although such structures are well established in certain metal oxides* and in some squareplanar complexes of third-row transition elements which allow stacking in one-dimensional chains.⁵ Herein we describe a procedure for the stepwise synthesis of a chain of metal atoms containing tungsten bonded to platinum or gold in which alkylidyne carbon atoms play a key role in holding the chain together.

Compound **(1)** has previously been prepared from $[W(\equiv CR)(CO)_{2}(\eta-C_{5}H_{5})]$ (R = C₆H₄Me-4) and [Pt(C₂H₄)₃] in 2:1 molar ratio.⁶ When $[Pt(cod)_2]$ (cod = cyclo-octa-1,5-

diene) is used, but with 1 : 1 stoicheiometry, the major product is **(2) (60%),7** with smaller amounts of (1) **(15%)** and (3) *(5%)*

being formed. Treatment of (1) with $[Pt(cod)₂]$ (1 mol. equiv.) in light petroleum also afforded **(2).** The latter with more [Pt(cod),] produces the triplatinum-ditungsten compound **(4)** *(55* %). The cod ligand in **(2)** is readily replaced by PMePh, to give **(5),** thereby blocking the platinum metal centre for further chain growth. However, displacement of the cod group in **(2)** by $[W(\equiv CR)(CO)_{2}(\eta - C_{5}H_{5})]$ affords (3) (50%).

The presence of the five metal atom chains in (3) and **(4)** was firmly established by single-crystal X-ray diffraction studies. \ddagger The molecular structures are shown in Figures 1 and 2, respectively. In both compounds the Pt-Pt separations are too long to represent any significant metal-metal bonding; a similar situation is found in di- and tri-platinum compounds with alkyne ligands transversely bridging the metal-metal

Crystal data for (3): $C_{45}H_{36}O_6Pt_2W_3$, $M = 1614.5$, monoclinic, space group $P2_1/c$ (No. 14), $a = 17.271(13)$, $b = 12.066(7)$, 2.44 g cm⁻³, $F(000) = 2928$, $\mu(M_0 - K_\alpha) = 149$ cm⁻¹. Current R 0.055 (R' 0.052) for 4 316 absorption corrected intensities (293 K, 2.9 $\leq 2\theta \leq 50^\circ$) measured on a Nicolet *P3m* diffractometer $[I \ge 2.5 \le 2.9]$; Mo-K_a, X-radiation, graphite monochro-
mator ($\bar{x} = 0.71069$ Å); blocked-cascade least squares refinement. $c = 22.041(9)$ A, $\beta = 111.99(6)$ °, $U = 4.315(5)$ A³, $Z = 4$, $D_c =$

 C_{rystal} data for (4): $C_{48}H_{48}O_4Pt_5W_3$. CH₄Cl₈, *M* = 1 617, mono-
clinic, space group *P2/n* (non-standard, setting No. 13), $a =$ connect space group $Y = \frac{12.181(2)}{2}$, $c = 16.828(3)$ Å, $\beta = 93.80(4)$ °, $U = 2.352(2)$ Å³, $Z = 2$, $D_m = 2.22$ g cm⁻³, $D_c = 2.23$ g cm⁻³
(298 K), $F(000) = 1.490$, $\mu(\text{Mo-}K_{\alpha}) = 140.5$ cm⁻¹. Final R 0.034 $(R'$ 0.035) for 2.658 independent absorption corrected data $[200 \text{ K}, 2\theta \le 50^\circ, I \ge 2\sigma(I)]$

Crystal data for (6): $C_{s0}H_{24}AuF_6O_4PW_2$, $M = 1158$, ortho-
rhombic, space group *Pnna* (No. 52), $a = 10.024(11)$, $b =$ 2.42 g cm⁻³, *F*(000) = 2 128, *p*(Mo-*K_a*) = 123.9 cm⁻¹. Final *R* 0.050 (*R'* 0.046) for 1 654 independent absorption corrected data [200 K, $2\theta \le 50^{\circ}$, $I \ge 2\sigma(I)$]. 22.247(12), $c = 13.905(5)$ Å, $U = 3.101(4)$ Å³, $Z = 4$, $D_c =$

[†] Selected spectroscopic data, i.r. in CH₂Cl₂; n.m.r., ¹³C- ^{{1}H} and ¹³¹Pt- ^{[1}H} in CDCl₃; for ¹³⁵Pt- ^{{1}H} chemical shifts are to high frequency of Ξ ⁽¹⁸⁵Pt) 21.4 MHz : compound **(2),** dark orange crystals, v_{C0} (max) at 1 935s, 1 837s(br.), and 1 737s cm⁻¹; ¹³C- {¹H } n.m.r. δ 310.7 (μ_2 -CR), 251.8 (μ_2 -CR), 241.5, 230.0, 228.6, and 221.0 p.p.m. (CO); ¹⁶⁵Pt-
{¹H}, δ 1 104 [Pt(cod), J(PtPt) 1 223 Hz] and 1 367 p.p.m. [PtW₂, J(PtPt) 1 223 Hz]. Compound (3), black crystals, v_{CO} (max) at 1 951s(br.) $J(PLC)$ 44, $J(WC)$ 186 Hz], and 224.9 p.p.m. [CO, $J(WC)$ 188 Hz]; $\frac{188 \text{ Hz}}{1}$; $\frac{1}{100}$; $\frac{1}{1$ 221.0 [CO, J(WC) 207 Hz], and 219.2 p.p.m. [CO, J(WC) 184 Hz];
 ¹⁹⁵Pt- ^{{1}H}, δ 1 620 p.p.m. [J(WPt) 136 Hz]; conformer **(3c)** (asym-
metric, *ca.* 25%), ¹³C- {¹H}, δ 314.8 [µ₂-C, J(PtC) 823 Hz], 308.8 and 216.8 p.p.m. (CO); 1s5Pt-(1H}, 6 1377 [J(PtPt) 1523 Hz] and 1 725 p.p.m. [J(PtPt) 1 523 Hz]. Compound **(4),** red brown crystals, v_{00} (max) at 1836s(br.) and 1729s cm⁻¹; n.m.r.,
conformer (4a) (ca. 65%), ¹²C-{¹H}, δ 258.3 (μ_s -C), 241.1 and
230.2 p.p.m. (CO); ¹³⁶Pt-{^{1H}}, δ 331.3 (PtW₂), and 516.5 p.p.m.
[Pt(cod)]; c νοο (max) at 1932s, 1806m, and 1765s(br.) cm⁻¹; n.m.r.,
¹⁴C-{¹H}, δ 311.8 [μ₂-C, J(PtC) 904 and 20 Hz], 252.8 [d, μ₃-C,
J(PC) 51, J(PtC) 460 Hz], 240.0, 231.1, 227.5, and 224.0 p.p.m.
(CO); ^{31P}-{¹H}, δ 8.5 δ 292.6 [d, μ_3 -C, J(PC) 32 Hz] and 290.9 p.p.m. [d, μ_3 -C, \dot{J} (PC) and -26.7 p.p.m. [d, $J(PP)^7$, $J(PtP)^7$ 2 764 Hz]. ^{12}C -{¹H}, δ 317.1 [2 \times μ ₂-C, $J(PtC)$ 833, $J(WC)$ 151 Hz], 262.7 $[1 \times \mu_{3}$ -C, J(PtC) 603 Hz], 230.8 [CO, J(WC) 171 Hz], 227.3 [CO, *(ca.* 35%), ¹³C- {¹H }, δ 307.7 [2 x *p*₂-C, *J*(PtC) 916 Hz], 262.7 [1 x p₁-C, *J*(PtC) 603 Hz], 230.1 [CO, *J*(PtC) 38, *J*(WC) 190 Hz], $(\mu_2\text{-}C)$, 257.3 [$\mu_3\text{-}C$, $J(\text{PtC})$ 611 Hz], 234.0, 229.8, 220.2, 217.4, a au 1 *3 1 3 (3 0 1)* cm
 a 292.6 [d, μ_2 -C, J(PC) 32 Hz] and 290.9 p.p.m. [d, μ_3 -C, J(PC)

25 Hz]; ³¹P-{¹H}, *δ* - 15.3 [d, J(PP) 5, J(PtP) 4 058 Hz], -25.6

[d, J(PP) 5, J(PtP) 2 766 Hz], -16.1 [d, J(PP) 7,

[†] The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data
Centre, University Chemical Laboratory, Lensfield Road,
Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

Figure 1. Molecular structure of $[Pt_2W_3(\mu - CC_6H_4Me-4)_2(\mu_3$ **CC.**H₄Me-4)(CO)_M(η -C₆H₄)(3). Dimensions: Pt(1)-W(1)2.773(2),
Pt(1)-W(2) 2.718(2), Pt(2)-W(1) 2.723(2), Pt(2)-W(3) 2.713(2),
Pt(1)-W(2) 2.949(2), W(1)-C(61) 1.99(3), W(2)-C(41) 1.97(3),
W(3)-C(101) 1.94(3), Pt(Pt(1)-W(1)-Pt(2) 64.9(1)⁶.

Figure 2. Molecular structure of $[Pt_3W_2(\mu_3-CC_6H_4Me-4)_2(CO)_4-(\eta-C_5H_6)_2(Cod)_2]$ (4). Dimensions: Pt(1)–W(1) 2.751(1), Pt(2)–W(1) 2.748(1), Pt(1) · · · Pt(2) 3.089(1), Pt(1)–C 2.078(10), Pt(2)–C 2.072(11), W(1)–C 2.023(11 C 2.072(11), $W(1)$ –C 2.023(11) Å; $\angle W(1)$ –C(1)–O(1) 158.2(10),
 $W(1)$ –C(2)–O(2) 166.4(10), Pt(1)–W(1)–Pt(2) 68.4(1), W(1)–Pt(1)– W(1') $176.0(1)$ °.

vectors.^{7,8} The Pt-W bonds are semi-bridged by CO groups in **(3)** and **(4).** Whereas in **(3)** two of the CR ligands are doubly bridging and one is triply bridging, in **(4)** the two CR ligands are triply bridging. In (3) the geometry about $Pt(1)$ and $Pt(2)$ is not identical, with Pt(1) more severely distorted from tetrahedral co-ordination. Thus, the angle between the planes Pt(1) \cdot W(2) \cdot C(41) and Pt(1) \cdot W(1) \cdot C(61) is 60.0°, whereas the corresponding angle at Pt(2) is 86.3'. In solution, **(3)** and **(4),** with their twisted metal atom chain structures, exist as mixtures of conformers, as evidenced by the additional peaks seen in the n.m.r. spectra.† The two $Pt_2(\mu_3-CR)$ fragments in **(4)** share a common vertex Pt(l), and the molecule lies astride

Figure 3. Molecular structure of the cation of the salt $[AuW_2-(\mu-Cc_6H_4Me-4)_2(CO)_4(\eta-C_6H_6)_2][PF_6]$ (6). Dimensions: Au-W
2.752(1), Au-C 2.119(17), W-C 1.832(16) Å; \angle W-Au-W'
162.8(1), W-C(1)-O(1) 177.5(17), W-C(2)-O(2)

a two-fold rotation axis. The symmetry related $PtW(\mu_3-C)$ triangles have a dihedral angle of **92".**

The Pt^o (d^{10}) atoms in the structures may be replaced by Au^l (d^{10}). Thus the salt (6)[†] may be prepared by addition of For a two-fold rotation axis. The symmetry related PtW(μ_3 -C)

a two-fold rotation axis. The symmetry related PtW(μ_3 -C)

riangles have a dihedral angle of 92°.

The Pt⁰ (d¹⁰) atoms in the structures may be repl

and TlPF, in thf (tetrahydrofuran). Similarly, $[AuCl$ {S(CH₂)₃CH₂}] and a mixture of $(7)^{10}$ and TlPF₆ in thf s have a dihedra
 P_1^0 (d¹⁰) atoms is

). Thus the salt
 $S(CH_2)_3CH_2$ }^p to
 $TIPF_6$ in the salt
 $TIPF_6$ in the salt
 $S(CH_2)_3CH_2$ } are

yielded the pentanuclear metal compound **(8).** The structure of (6) was established by X-ray diffraction, \ddagger and the cation is shown in Figure **3.** The metal atom chain is significantly non-linear [162.8(1)'] as found in **(1)** [165.5(0)"]. However, in contrast with the latter, none of the CO ligands in *(6)* is semibridging. Moreover, the angle between the two $AuW(\mu-C)$ planes is 61° compared with a value of 97° for the PtW(μ -C) planes in (1) .⁶

We thank the S.E.R.C. for support, and the Malaysian Government for a Scholarship **(M.** R. A.).

Received, 6th June 1983; Corn. 721

References

- 1 'Transition Metal Clusters,' ed. B. F. G. Johnson, Wiley-Interscience, Chichester, 1980.
- 2 K. Wade, *Adv. Znorg. Chem. Radiochem.,* 1976, **18,** 1.
- 3 R. J. Goudsmit, B. F. G. Johnson, J. Lewis, P. R. Raithby, and K. H. Whitmire, J. Chem. Soc., Chem. Commun., 1983, 246.
- 4 R. E. McCarley in 'Inorganic Chemistry: Towards the 21st Century,' A.C.S. Symposium Series, No. 211, 1983, pp. 271--290; R. E. McCarley, *Philos. Trans. R. SOC. London, Ser. A,* 1982, **308,** 141.
- *5* J. **S.** Miller and A. J. Epstein, *Prog. Znorg. Chem.,* 1976, *20,* 1.
- 6 T. V. Ashworth, M. J. Chetcuti, J. A. K. Howard, F. G. A. Stone, S. J. Wisbey, and P. Woodward, J. Chem. Soc., Dalton *Trans.,* 1981, 763.
- 7 *F.* G. A. Stone, *Acc. Chem. Res.,* 1981, **14,** 318.
- 8 D. M. Hoffman and R. Hoffmann, J. *Chem.* **SOC.,** *Dalton Trans.,* 1982, 1471.
- 9 R. Uson, A. Laguna, and J. Vicente, J. *Organomet. Chem.,* 1977, **131,** 471.
- 10 T. V. Ashworth, J. A. K. Howard, and F. G. A. Stone, J. *Chem.* **SOC.,** *Dalton Trans.,* 1980, 1609.